Generalized Jensen-Mercer Inequality for Functions with Nondecreasing Increments
نویسندگان
چکیده
منابع مشابه
On a Variant of the Jensen–mercer Inequality for Operators
Some refinements of the Jensen-Mercer inequality for operators are presented. Obtained results are used to refine some comparision inequalities between power and quasiarithmetic means for operators. Mathematics subject classification (2000): 47A63, 47A64.
متن کاملOn the Jensen-Steffensen inequality for generalized convex functions
Jensen–Steffensen type inequalities for P -convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen–Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.
متن کاملBounds for the Normalized Jensen – Mercer Functional
We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...
متن کاملOn the Jensen type inequality for generalized Sugeno integral
We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.
متن کاملA Jensen Inequality for a Family of Analytic Functions
We improve an estimate obtained in [Br] for the average number of limit cycles of a planar polynomial vector field situated in a neighbourhood of the origin provided that the field in a larger neighbourhood is close enough to a linear center. The result follows from a new distributional inequality for the number of zeros of a family of univariate holomorphic functions depending holomorphically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2016
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2016/5231476